

Contents

- Definitions
- Leaching
- In situ Leaching
- Solution Mining
- Mining through Boreholes
- Future Trends
- Questions or Comments?

Definitions

- Leaching—An ore processing method that uses a chemical solution to extract a desired mineral from an unprepared or prepared ore stockpile or process feedback.

 - Dump Leaching
 Heap Leaching
 Vat Leaching
- In situ Leaching—An ore processing method that uses a *chemical solution* to dissolve a desired mineral from a *geological ore zone* into solution through boreholes, abandoned underground workings, or specially prepared rock.
 Uranium
 Copper
 Silver

Dump Leaching

- Ore Grade is too Low for Crushing, Grinding, Concentration, and Smelting
- No Crushing or Sizing (no preparation)
- Low-Permeability Dump Leach Base (State and Federal permits)

Heap Leaching

- Primary or Supplementary Mineral Processing
- Material is Crushed and Sized (preparation)
- Heap Leach is Designed for Optimum Mineral Recovery
- Low-Permeability Heap Leach Base (State and Federal permits)

In Situ Leaching

- A Dilute Chemical Solution is Used to Leach a Desired Mineral in Place (*no transport of the ore*)
- Undisturbed or Specially Prepared Ore Body
 - Wells drilled specifically for in situ leaching
 - Inactive or previously mined underground mine

Wyoming Yellow Cake loaded into 55 gallon Drums for Shipment

Solution Mining

- Minerals extraction
- Cavern Development for Storage

Solution Mining

- Water or Hot Water
- Water Soluble Minerals
- Undisturbed or Previously Mined Ore Body
 - Wells drilled specifically for solution mining
 - Inactive or previously mined underground mine

PRC --Vale (previously Rio Tinto)

- Solution mining method similar to that used by Mosaic in Saskatchewan
- Pilot test completed
- Commercial development currently halted

Intrepid Potash's Cane Creek Potash Solution Mine

Intrepid Potash's Cane Creek Potash Solution Mine

Injection Well

Recovery Well

Borehole Mining

- Mining System
- Extracts or Converts
- Wells Drilled for the Mining of a Specific Mineral
- Oil Shale

Borehole Mining

- Advantages
 - Low capital costs
 Low labor costs
- Disadvantages
 - Low recovery (20%–50%)
 Specific mineral
 Possible high energy costs
- Fossible ingretiet grows
 Frasch Sulphur—Texas and Louisiana
 Coal Gasification
 Oil Shale—Western Colorado
 Tar Sands (SAG-D)—Canada

Future Trends

- Wider acceptance of Solution Mining
- Environmentally acceptable
- BioLeaching (Sulfide Ores)
- Coal Gasification
- Tar Sands
- Oil Shale
- Application of Directional Drilling

